当前位置:首页 > 知识经验 > 根号7等于多少

根号7等于多少

  • 少女情壊
  • 2024-04-09 15:15:38
精选回答

2.6457513110646

7^(1/2)=2.6457513110646。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非*平方数的平方根、π和e(其*两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率。

根式乘除法法则

1、同次根式相乘(除),把根式前面的系数相乘(除),作为积(商)的系数;把被开方数相乘(除),作为被开方数,根指数不变,然后再化成最简根式。

2、非同次根式相乘(除),应先化成同次根式后,再按同次根式相乘(除)的法则进行运算。

根式的加减法法则:各个根式相加减,应先把根式化成最简根式,然后合并同类根式。二次根式加减法法则:先把各个二次根式化简成最简二次根式,再把同类二次根式分别合并。

在根式的加减法中,同类根式要合并。一般地,几个根式总可以化成同次根式,但不*能化成同类根式。

根号的历史转变

古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。与此同时,有人采用“根”字的拉丁文radix中*个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的*个字母q,或“立方”的*个字母c,来表示开的是多少次方。例如,中古有人写成R。q。4352。数学家邦别利(1526~1572年)的符号可以写成R。c。?7p。R。q。14╜,其中“?╜”相当于括号,P(pls)相当于用的加号(那时候,连加减号“+”“-”还没有通用)。直到十七世纪,法国数学家笛卡尔(1596~1650年)*个使用了现今用的根号“√ ̄”。在一本书中,笛卡尔写道:“如果想求n的平方根,就写作,如果想求n的立方根,则写作。”有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号的使用,比如25的立方根用表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也*是从天上掉下来的。

声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。

发表评论

最新问答