19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫不等式或切比雪夫定理,其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例总是至少为1减m的平方分之1,其中m为大于1的任意正数。对于m等于2、m等于3和m等于5有如下结果:
所有数据中,至少有百分之75的数据位于平均数2个标准差范围内。
所有数据中,至少有百分之88.9的数据位于平均数3个标准差范围内。
所有数据中,至少有百分之96的数据位于平均数5个标准差范围内。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论