已知函数解析式时:
1、分式时:分母不为0。
2、根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0。
3、指数时:当指数为0时,底数*不能为0。
4、根号与分式结合,根号开偶次方在分母上时:根号下大于0。
5、指数函数形式时:底数和指数都含有x,指数底数大于0且不等于1。
6、对数函数形式,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1。
抽象函数换元法:
1、给出了定义域就是给出了所给式子中x的取值范围。
2、在同在同一个题中x不是同一个x。
3、只要对应关系不变,括号的取值范围不变。
4、求抽象函数的定义域,关键在于求函数的取值范围,及括号的取值范围。
复合函数定义域:理解复合函数就是可以看作由几个我们熟悉的函数组成的函数,或是可以看作几个函数组成一个新的函数形式。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论