-1
余弦函数的定义域是整个实数集,值域是(-1,1)。它是周期函数,其*正周期为2π。在自变量为2kπ(k为整数)时,该函数有*值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
三角函数的定义
1.设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)则P与原点的距离。
2.突出探究的几个问题:
①角是“任意角”,当b=2kp+a(k?Z)时,b与a的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等;
②实际上,如果终边在坐标轴上,上述定义同样适用;
③三角函数是以“比值”为函数值的函数;
④而x,y的正负是随象限的变化而不同,故三角函数的符号应由象限确定。
⑤定义域
注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合。
(2)OP是角的终边,至于是转了几圈,按什么方向旋转的不清楚,也只有这样,才能说明角是任意的。
(3)比值只与角的大小有关。
3.三角函数在各象限内的符号规律:*象限全为正,二正三切四余弦
余弦函数公式
半角公式
cos(A/2)=±√((1+cosA)/2)
倍角公式
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
两角和与差公式
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
积化和差公式
cosAcosB=[cos(A+B)+cos(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
和差化积公式
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
余弦定理
对于任意三角形,*一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
对于边长为a、b、c而相应角为A、B、C的三角形则有:
①a2=b2+c2-2bc·cosA;
②b2=a2+c2-2ac·cosB;
③c2=a2+b2-2ab·cosC。
也可表示为:
①cosC=(a2+b2-c2)/2ab;
②cosB=(a2+c2-b2)/2ac;
③cosA=(c2+b2-a2)/2bc。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论