泰勒展开式指的是一个用函数在某点的信息描述其附近取值的公式。如果函数满足*的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。泰勒公式就得名于布鲁克·泰勒,他在1712年的一封信里*叙述了这个公式。
布鲁克·泰勒,18世纪早期英国牛顿学派代表人物之一,英国数学家,于1685年8月18日在米德尔塞克斯的埃德蒙顿出生。18世纪早期英国牛顿学派*秀代表人物之一的英国数学家。
主要著作
泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的*定理——泰勒定理:式内v为独立变量的增量,及为流数。
他假定z随时间均匀变化,则为常数。上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作麦克劳林定理。1772年,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨,这工作直至十九世纪二十年代才由柯西完成。
泰勒定理开创了有限差分理论,使*单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。
1715年,他出版了另一名著《线性透视论》,更发表了再版的《线性透视原理》(1719)。他以极严密之形式展开其线性透视学体系,其中最突出之贡献是提出和使用“没影点”概念,这对摄影测量制图学之发展有*影响。另外,还撰有哲学遗作,发表于1793年。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论