二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。
由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得。
也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α。
二面角的通常求法:
1、由定义作出二面角的平面角;
2、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;
3、利用三垂线定理(逆定理)作出二面角的平面角;
4、空间坐标求二面角的大小。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论