两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一
两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。两点间距离公式叙述了点和点之间距离的关系。
公式
两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。
两点间距离公式是∣AB∣=√[(x1-x2)2+(y1-y2)2]。
两点间距离公式叙述了点和点之间距离的关系。
设两个点A、B以及坐标分别为:A(X1,Y1)、B(X2,Y2)则A和B两点之间的距离为:∣AB∣=√[(x1-x2)2+(y1-y2)2]。两点距离公式是常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。*古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在*,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论