2
±√4=±2,√4=2。
√4是根式。
根式的定义
含有开方(求方根)运算的代数式,叫根式。即含有根号的表达式。
计算公式
1、√ab=√a·√b﹙a≥0b≥0﹚这个可以交互使用。这个最多运用于化简,如:√8=√4·√2=2√2
2、√a/b=√a÷√b﹙a≥0b﹥0﹚
3、√a2=a(其实就是等于*值)这个知识点是二次根式重点也是难点。当a>0时,√a2=a(等于它的本身);当a=0时,√a2=0;当a<0时,√a2=-a(等于它的相反数)
4、分母有理化:分母不能有二次根式或者不能含有二次根式。当分母中只有一个二次根式,那么利用分式性质,分子分母同时乘以相同的二次根式。如:分母是√3,那么分子分母同时乘以√3。
数a的n(n为自然数)次方根指的是n方幂等于a的数,也就是适合b的n次方=a的数b。例如16的4次方根有2和-2。一个数的2次方根称为平方根;3次方根称为立方根。各次方根统称为方根。
求一个指定的数的方根的运算称为开方。一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。
在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的3次方根为-2;正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2;负实数不存在偶数次方根;零的*次方根都是零。
在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。如果复数,那么它的n个n次方根是,k=0,1,2…,n-1。
用笔算算开方的方法
1.从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
2.求不大于左边*节数的*平方数,为“商”;
3.从左边*节数里减去求得的商,在它们的差的右边写上第二节数作为*个余数;
4.把商乘以20,试除*个余数,所得的*整数作试商(如果这个*整数大于或等于10,就用9或8作试商);
5.用商乘以20加上试商再乘以试商。如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止;
6.用同样的方法,继续求。
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若a?=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用n√ ̄表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论