首先偏导数是针对二元或二元以上的函数,导数是针对一元函数;二阶偏导数连续,就是说二阶偏导数存在,并且二阶偏导数是连续函数;二阶导数连续就是说二阶导数存在,并且这个二阶导函数是连续函数。
具有二阶连续导数,那么必然有二阶连续偏导数
反之不为真,即具有二阶连续偏导数,不*有二阶连续导数
把二换成一也是一样的。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论