怎样用矩阵形式表示二次型线性代数 已知二次型 怎么求对应矩阵设三元二次型f(x1,x2,x3)=xTAx的矩阵矩阵A满足A^2+2A=O,则矩阵A的特征值只能是0和-2,而根据Ax=0的基础解系的结构是一个向量,则A的秩是2,因此矩阵A的特征值只能是-2,-2,0,则二次型表达式f(x1,x2,x3)= -2*x1^2-2*x2^2二次型的矩阵怎么求
二次型的矩阵的求法:二次型f(x,y,z)=ax2+by2+cz2+dxy+exz+fyz,用矩阵表示的时候,矩阵的元素与二次型系数的对应关系为:A11=a,A22=b,A33=c,A12=A21=d/2,A13=A31=e/2,A23=A32=f/2。
二次型:n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。
线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。
二次型理论与域的特征有关。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论