ln等于loge
ln等于loge。ln是一个算符,意思是求自然对数,即以e为底的对数。e是一个常数,约等于2.71828183,lnx可以理解为ln(x),即以e为底x的对数。
自然对数是以常数e为底数的对数,记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义,一般表示方法为lnx。数学中也常见以logx表示自然对数。常数e的含义是单位时间内,持续的翻倍增长所能达到的*值。
e与π的哲学意义
数学讲求规律和美学,可是圆周率π和自然对数e那样基本的常量却那么混乱,就如同两个“数学幽灵”。人们找不到π和e的数字变化的规律,可能的原因:例如:人们用的是十进制,古人掰指头数数,因为是十根指头,所以定下了十进制,而二进制才是宇宙最朴素的进制,也符合阴阳理论,1为阳,0为阴。再例如:人们把π和e与那些规整的数字比较,所以觉得e和π很乱,因此涉及“参照物”的问题。那么,如果把π和e都换算成最朴素的二进制,并且把π和e这两个混乱的数字相互比较,就会发现一部分数字规律,e的小数部分的前17位与π的小数部分的第5-21位正好是倒序关系,这么长的倒序,或许不是巧合。
说明[]符号内为17位倒序区。
二进制π取部分值为11.0010[01000011111101101]010100010001000010110100011
二进制e取部分值为10.[10110111111000010]101000101100010100010101110110101
17位倒序区的意义:或许暗示e和π的发展初期可能按照某种彼此相反的规律发展,之后e和π都脱离了这个规律。但是,由于2进制只用0和1来表示数,因而出现相同,倒序相同,栅栏重排相同的情况不足为奇,虽然这种情况不*是巧合,但思辨性结论不是科学结论,不应该作为科学证据使用。
以常数e为底数的对数叫做自然对数记作lnN(N>0)
*的数学家欧拉,大部分时间在俄国和法国度过,他17岁获得硕士学位,早年在数学天才贝努里赏识下开始学习数学,毕业后研究数学,是数学**产的作家。在世发表论文700多篇,去世后还留下100多篇待发表。其论著几乎涉及所有数学分支。*的七座桥问题也是他解决的。他是创立数学符号的大师。首先使用f(x)表示函数,首先用∑表示连加,首先用i表示虚数单位。1727年首先引用e来表示自然对数的底。欧拉公式有两个一个是关于多面体的,如凸多面体面数是F,顶点数是V,棱数是E,则V-E+F=2这个2就称欧拉示性数。另一个是关于级数展开的,e^(i*x)=cos(x)+i*sin(x),这里i是虚数单位i的平方=-1。它的含义是单位时间内,持续的翻倍增长所能达到的*值。
声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。
发表评论