当前位置:首页 > 精彩推荐 > 微积分公式是什么

微积分公式是什么

  • 温柔不够
  • 2024-03-29 16:13:00
精选回答

牛顿-莱布尼茨公式

微积分基本公式是牛顿-莱布尼茨公式

1、通常把自变量x的增量Δx称为自变量的微分。

2、积分分为2种,其中一种定积分就是求累积起来的量。

3、积分在初等数学的范围内是无法求解的。

微积分的基本公式共有四大公式

1、牛顿-莱布尼茨公式,又称为微积分基本公式;

2、格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分;

3、高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分;

4、斯托克斯公式,与旋度有关。

内容简介

微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:*理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。

微分和积分的区别

微分就是在某点处用切线的直线方程近似曲线方程的取值,不指定某点就是所有点满足的关系式;积分分为定积分和不定积分,定积分就是求曲线与x轴所夹的面积;不定积分就是该面积满足的方程式。

数学表达不同

微分

导数和微分在书写的形式有些区别,如y=f(x),则为导数,书写成dy=f(x)dx,则为微分。

积分

设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f(x)=g(x),

几何意义不同

微分

设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。几何意义是将线段无线缩小来近似代替曲线段。

积分

实际操作中可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道*的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。

微分

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的*叫作函数在dx处的微分,微分的中心思想是*分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

积分

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

则有∫g(x)dx=f(x)+c。

声明:本文内容及图片来源于读者投稿,本网站无法甄别是否为投稿用户创作以及文章的准确性,本站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。请将本侵权页面网址发送邮件到 jubao-mail@foxmail.com,我们会及时做删除处理。

发表评论

最新问答